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Abstract
The boundary element method is one of the reliable numerical schemes to solve
the eigenvalue problem of the Helmholtz equation, which is justified by the
Fredholm theory for domains with a smooth boundary. When a domain has
corners, however, the corresponding integral equation is singular, so that the
boundary element method lacks its well-established base. Employing a cutoff
technique, we here formulate a well-grounded version of the boundary element
method, and also give a certain justification to the standard boundary element
method even for domains with corners.

PACS number: 05.45.Mt

1. Introduction

The billiard system plays a central role in the study of quantum chaos [1]. This is because one
can control underlying classical dynamics only by deforming the shape of the billiard tables.
In particular, conjectured universalities of level statistics are often tested employing billiard
systems such as the Sinai, stadium or dispersing billiards where full chaotic behaviour is shown
to be realized [2]. Also, polygonal billiards recently attract much attention as intermediate
systems standing between integrable and chaotic ones. It was numerically suggested that level
statistics of polygonal billiards significantly deviates from the GOE universality class [3]. A
semiclassical argument to understand such marginal systems has been developed [4] and the
importance of diffractive corrections has been recognized [5–7]. The isospectral problems
also concern the billiard system [8], and as far as planar billiards are concerned, all known
isospectral examples have corners [9–13].

In any case, we often encounter and need to investigate billiard tables with cusps, corners
or other types of non-smooth boundaries. A problem of corners can be recognized, for instance,
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when one numerically obtains the quantum energy levels of a billiard system by using plane
wave decomposition [14]. Though each eigenstate of a billiard, except for non-convex one
[15], can be approximated by the superposition of real plane waves, it has been reported that
a number of eigenstates are missed in a numerical procedure based on the real plane wave
decomposition for domains with corners [16]. This puzzling situation originates from the
fact that singular superposition is needed for the eigenstate of a billiard with corners; in other
words, evanescent modes should be included in the basis to obtain the eigenstates, because of
the presence of corners [16–18].

The boundary element method (BEM) is another numerical method to solve the eigenvalue
problem of the Helmholtz equation. It has been applied to billiards with a wider class of
geometries including non-convex ones [19–22]. However, also in the BEM, we inevitably
encounter problems of singularity caused by the presence of corners [24]. As discussed in this
paper, the BEM is based on a Fredholm integral equation of the second kind whose integral
kernel is determined by the geometry of the billiard, and eigenenergies are obtained as real zeros
of the discretized Fredholm determinant [25, 26]. When the billiard has corners, however, the
integral kernel becomes singular. This means that the convergence of the determinant cannot
be guaranteed only within the Fredholm theory. That is, the BEM lacks a well-established
basis if the billiard has corners.

This paper is devoted to providing a well-grounded version of BEM for billiards with
corners. In section 2, we will state problems caused by corners more explicitly. In section 3,
we will derive a non-singular integral equation for billiards with corners, and also provide a
certain justification for the standard BEM. Section 4 concludes and summarizes the paper.

2. Corner problem in the BEM

In this section, we formulate the BEM and specify our problem for billiards with corners. The
equation considered here is the Schrödinger–Helmholtz equation for the domain �:

(� + k2)�(r) = 0, r ∈ �, (1)

with the homogeneous Dirichlet boundary condition

�−(r) := lim
��r′→r

�(r′) = 0, r ∈ ∂�, (2)

where k = √
2mE/h̄. Hereafter the domain � is assumed to be enclosed with the boundary

∂� consisting of a finite number of C2 arcs {�1, �2, . . . , �m} and a set of corner points
{p1, p2, . . . , pm}. The interior angle of each corner pi , which is defined by the angle of
intersecting tangent lines at the corner, is denoted by γi . A typical example is illustrated in
figure 1.

In order to convert equations (1) and (2) into an integral equation, we express the solution
of equation (1) with equation (2) as the double-layer potential with a density ρ:

�(r) =
∫

∂�

∂G0(r, r(s); k)

∂νs

ρ(s) ds, r ∈ �, (3)

where νs denotes the outer unit normal at the point r(s) ∈ ∂� with an arc length parameter s
and G0 is the free Green’s function defined as

G0(r, r′; k) = − i

4
H

(1)
0 (k|r − r′|). (4)

Here H
(1)
0 denotes the zero-order Hankel function of the first kind. The integral over ∂� should

be read as the sum of improper integrals:
∫
�1

+
∫
�2

+ · · · +
∫
�m

, because νs cannot be defined
at the corners. The double-layer potential �(r) clearly satisfies the Helmholtz equation (1)
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Figure 1. A domain with corners. The boundary consists of a finite number of C2 arcs and corners.

at each interior point r ∈ �, thus �(r) becomes a solution of the Dirichlet problem if the
boundary condition (2) is fulfilled. Since the boundary value of the double-layer potential (3)
can be written as

�−(r(t))=




∫
∂�

∂G0(r(t), r(s); k)

∂νs

ρ(s) ds +
1

2
ρ(t), r(t) ∈ ∂�\{p1, p2, . . . , pm},

∫
∂�

∂G0(r(t), r(s); k)

∂νs

ρ(s) ds +
γi

2π
ρ(t), r(t) = pi ∈ {p1, p2, . . . , pm},

(5)

we obtain an equivalent integral equation for the original problems (1) and (2),


ρ(t) −
∫

∂�

K(t, s; k)ρ(s) ds = 0, r(t) ∈ ∂�\{p1, p2, . . . , pm},

γi

π
ρ(t) −

∫
∂�

K(t, s; k)ρ(s) ds = 0, r(t) = pi ∈ {p1, p2, . . . , pm},
(6)

where

K(t, s; k) := −2
∂G0(r(t), r(s); k)

∂νs

= − ik

2

[r(s) − r(t)] · νs

|r(s) − r(t)| H
(1)
1 (k|r(s) − r(t)|). (7)

Here we note that the integral exists as an improper integral in equation (6), even if the diagonal
of the integral kernel (7) cannot be defined.

Discretizing the boundary integral in equation (6) with appropriate quadrature points
{s1, s2, . . . , sn} and their weights {w1, w2, . . . , wn}, one can reduce the integral equation to a
n-dimensional linear system:

ρ(si) −
n∑

j=1

wjK(si, sj ; k)ρ(sj ) = 0. (8)

Since the linear system (8) has a non-trivial solution if and only if

�(n)(k) := det[δij − wjK(si, sj ; k)] = 0, (9)

where δij denotes the Kronecker delta, each zero of �(n)(k) is expected to approximate an
eigenvalue of the original problems (1) and (2) when the number of quadrature points is
sufficiently large. The required number of quadrature points n is determined by comparing
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the de Broglie wavelength and the mean distance between the quadrature points. For given k,
the corresponding de Broglie wavelength λk is given as 2π/k, so we should take n sufficiently
larger than nk = |∂�|k/2π . We call the procedure giving approximate eigenvalues as the
zeros of the determinant (9) the standard BEM in this paper.

Here we should refer to the transposed integral equation of (6), which is also used to
formulate a BEM in the literature [19]. If we express a solution of (1) as a single-layer
potential

�(r) =
∫

∂�

G0(r, r(s); k)µ(s) ds, r ∈ �, (10)

the transposed integral equation

µ(t) −
∫

∂�

−2
∂G0(r(t), r(s); k)

∂νt

µ(s) ds = 0, (11)

follows from the boundary condition (2) by the gap relation for the normal derivative of the
single-layer potential. It is obvious that the corresponding determinant of the discretized
integral equation coincides with (9) if quadrature points are chosen to avoid the corners at
which the transposed integral equation (11) is not defined. So it is sufficient to concentrate on
equation (6) in the following.

Now let us focus on the infinite-dimensional determinant limn→∞ �(n)(k). To confirm
that the standard BEM gives correct eigenvalues of the Dirichlet problems (1) and (2), it
must be proved that the determinant (9) converges as n → ∞ and its zeros coincide with the
eigenvalues. As far as the domain enclosed with a single closed C2 curve is concerned, this is
guaranteed by the Fredholm theory for the integral equation defined by a continuous kernel.
Since the behaviour of the Hankel function around τ(s, t) := |r(s) − r(t)| = 0 is given as

H
(1)
1 (kτ (s, t)) = − 2i

πkτ(s, t)
+ O(kτ (s, t)(1 + log kτ(s, t))), (12)

the diagonal of the integral kernel (7) is not defined by definition (7). However, we also have

[r(s) − r(t)] · νs

|r(s) − r(t)| = 1

2
κ(t)τ (s, t) + O(τ (s, t)2), (13)

so the singularity of the Hankel function is compensated. The integral kernel K can thus be
continuously extended onto the whole of ∂� × ∂� by putting the diagonal as

K(t, t; k) = −κ(t)

2π
. (14)

Here κ(t) denotes the curvature of the boundary at the point r(t). Thus, one can apply the
Fredholm theory to prove that the determinant (9) converges to the Fredholm determinant
defined as

D(k) := 1 +
∞∑

n=1

Dn(k), (15)

where

Dn(k) := (−1)n

n!

∫
∂�

ds1 · · ·
∫

∂�

dsn

∣∣∣∣∣∣∣
K(s1, s1; k) · · · K(s1, sn; k)

...
. . .

...

K(sn, s1; k) · · · K(sn, sn; k)

∣∣∣∣∣∣∣
, (16)

and the integral equation (6) has a non-trivial solution if and only if D(k) = 0 [27].
When the domain has corners, in contrast, the infinite-dimensional determinant

limn→∞ �(n)(k) does not immediately make sense as it stands. In fact, the divergence in (12)
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Figure 2. Density plot of |K(t, s; k)| (k = 21.5) for the π/2–π/3–π/6-angled triangular domain.
The horizontal and vertical directions represent s and t, respectively, and brightness the absolute
value of K(t, s; k). The points (0, 0), (1, 1) and (3, 3) correspond to corners with interior angles
π/2, π/3 and π/6, respectively.

cannot be cancelled when r(s) and r(t) approach each other from opposite sides of a corner.
Hence, the integral kernel (7) is not of Hilbert–Schmidt type and one cannot apply the Fredholm
theory in order to guarantee that the standard BEM gives the correct eigenvalues for the domain
with corners.

Here, we should mention a singular boundary integral equation derived for billiards
subjected to a constant magnetic field [23]. However, the integral kernel discussed there has
a singularity of type 1/τ 2, whereas our integral kernel (7) has a singularity of type 1/τ .

The singularity of the integral kernel (7) causes difficulties in numerical computation
of the determinant (9) appearing in the standard BEM. Recalling that the integral appearing
in equation (6) is an improper integral, we here numerically examine the determinant by
introducing a cutoff kernel

K(ξ)(t, s; k) := hξ (|t − s|)K(t, s; k), (17)

where

hξ (x) :=




0, |x| � ξ

2
,

2

ξ
x − 1,

ξ

2
� |x| � ξ,

1, ξ � |x|.

(18)

Note that the determinant

�(ξ,n)(k) := det[δij − wjK
(ξ)(si, sj ; k)] (19)

is guaranteed to converge to its Fredholm determinant, say D(ξ)(k), for each ξ > 0, because
the kernel K(ξ) is bounded and piecewise continuous.

To see the nature of the determinant �(ξ,n)(k), as an example, we here take the π/2–
π/3–π/6-angled triangle, whose eigenvalue spectrum is analytically known. The profile of its
integral kernel is presented in figure 2. One can see that the integral kernel K(t, s; k) diverges
around the corners if s and t are located on the opposite sides of each corner. As depicted in
figure 3, if one uses a cutoff kernel with a certain finite cutoff length ξ , �(ξ,n)(k) certainly
converges with the increase of n. However, figure 4 shows that D(ξ)(k) tends to zero as the
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Figure 3. Plot of �(ξ,n)(k) as a function of (a) k and (b) n. ξ is fixed at |∂�|/200.
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Figure 4. Plot of �(ξ,n)(k) as a function of (a) k and (b) |∂�|/ξ . The number of quadrature points
n is fixed at 400.

cutoff length ξ → 0. In this plot, n is taken as 400, which ensures the convergence of �(ξ,n)(k)

from figure 3, meaning that in this ξ region �(ξ,n)(k) can be regarded as D(ξ)(k). One further
notes in figure 4(b) that the decay rate of D(ξ)(k) is algebraic and its exponents do not depend
on k. This result strongly implies that even though limn→∞ �(n)(k) may exist, it bears no
meaningful information. Such behaviour of the determinant, as far as we have examined, is
found for the domain with corners in general.

In the final part of this section, we show that �(n)(k) → 0 is also observed in the standard
calculation of the determinant �(n)(k) if one discretizes it with some considerations for the
quadrature points. Usually, the determinant (9) appearing in the standard BEM depends
strongly on the configuration of quadrature points around the corners. It behaves wildly as a
function of n, and it would be hard to find general trends. However, if we take, for example,
the Gauss–Legendre quadrature rule to discretize the integral over each edge, we can verify
that the determinant (9) vanishes in the same way as seen in figure 3. Figure 5 shows that the
determinant (9) converges to zero. More importantly, one finds that the exponent of algebraic
decrease looks uniform in k, namely

lim
n→∞ �(n)(k) ∼ n−αD̃(k), (20)

where α denotes a positive constant depending on the shape of the billiard table. This suggests
the possibility that one can obtain the eigenvalues of equation (1) with (2) as zeros of D̃(k)
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Figure 5. Plot of �(n)(k), which appears in the standard BEM as a function of (a) k and (b) n. The
squares on the k-axis represent analytically obtained eigenvalues.
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Figure 6. Plot of the ratio �(n)(k)/�(n)(0) as a function of (a) k and (b) n. The squares on the
k-axis represent analytically obtained eigenvalues.

even though the domain has corners. Figure 6 is a plot of the ratio limn→∞ �(n)(k)/�(n)(0).
As can also be seen, the zeros of D̃(k) are in good agreement with correct eigenvalues. Such
an idea was first proposed as an ‘ad hoc renormalization’ in [24].

In order to overcome these difficulties described above, we will reformulate a BEM
derived from a non-singular integral equation. For the triangular domains, Pisani tackled the
problem along this line, and successfully derived a non-singular integral equation based on
the wedge Green’s function [24]. However, it is not so easy to generalize Pisani’s method to
polygonal domains and more generally to domains with corners. It is also important to note
that one cannot apply Pisani’s method to justify the standard BEM since the latter is based on
the free Green’s function. In the next section, we consider an alternative non-singular integral
equation based on the free Green’s function and give a modified BEM with a rigorous basis
for domains with corners. A justification for ‘ad hoc renormalization’ is also given in the final
part of the next section.

3. A BEM derived from non-singular integral equation

In this section, we will derive a non-singular integral equation from the original one (6). To
this end, we apply the decomposition method [28]. If the operator



6682 Y Okada et al

(K̂ρ)(t) =




∫
∂�

K(t, s; k)ρ(s) ds, r(t) ∈ ∂�\{p1, p2, . . . , pm},
∫

∂�

K(t, s; k)ρ(s) ds +
(

1 − γi

π

)
ρ(t), r(t) ∈ {p1, p2, . . . , pm},

(21)

appearing in the integral equation (6) admits a decomposition K̂ = K̂R + K̂S such that (i) K̂R

is an integral operator whose kernel KR(t, s; k) is bounded and continuous on each ∂� × �i ,
and (ii) K̂S is a bounded operator on C0(∂�) with ‖K̂S‖ < 1 for the maximum norm, then
(1 − K̂S) has a bounded inverse which is expressed as the Neumann series

(1 − K̂S)
−1 = 1 + K̂S + K̂2

S + · · · . (22)

As a result, the original integral equation ρ − K̂ρ = 0 is converted into

ρ − (1 − K̂S)
−1K̂Rρ = 0. (23)

Since the integral kernel

K̃(t, s; k) = [(1 − K̂S)
−1KR(·, s; k)](t) (24)

is bounded and continuous on each ∂� × �i , one can apply the Fredholm theory to solve the
integral equation (23).

To obtain a required decomposition, consider the operator defined as

(K̂0ρ)(t) :=




∫
∂�

K0(t, s)ρ(s) ds, r(t) ∈ ∂�\{p1, p2, . . . , pm},
∫

∂�

K0(t, s)ρ(s) ds +
(

1 − γi

π

)
ρ(t), r(t) = pi ∈ {p1, p2, . . . , pm},

(25)

where K0(s, t) is a singular part of the kernel K(t, s; k):

K0(t, s) = − 1

π

[r(s) − r(t)] · νs

|r(s) − r(t)|2 . (26)

Note that K̂0ρ belongs to C0(∂�) for arbitrary ρ ∈ C0(∂�). In fact, −K̂0ρ is given as a sum
of the interior and exterior boundary values �∓ of the double-layer potential

�(r) =
∫

∂�

∂H0(r, r(s))

∂νs

ρ(s) ds (27)

with respect to a free Green’s function of the Laplace equation

H0(r, r′) = − 1

2π
ln

1

|r − r′| , (28)

because the following gap relation holds:

�∓(r(t)) =




∫
∂�

∂H0(r(t), r(s))

∂νs

ρ(s) ds ± 1

2
ρ(t), r(t) ∈ ∂�\�,

∫
∂�

∂H0(r(t), r(s))

∂νs

ρ(s) ds ± δ∓
i

2
ρ(t), r(t) = pi ∈ {p1, p2, . . . , pm},

(29)

where δ−
i = γi/π and δ+

i = (2π − γi)/π . Both the interior and exterior boundary values �∓

are continuous, so K̂0ρ is. However, the operator K̂0 is not suitable for our purpose, because
‖K̂0ρ‖ = 1 follows from the Green’s theorem for the constant density ρ(t) = 1.
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Therefore, we first introduce the cutoff operator K̂
(ξ)

S given as
(
K̂

(ξ)

S ρ
)
(t) := (K̂0ρ)(t) −

∫
∂�

K0(t, s)hξ (|t − s|)ρ(s) ds, (30)

where hξ denotes the cutoff function defined as (18). Since, as shown above, K̂0ρ belongs to
C0(∂�), K̂

(ξ)

S ρ also belongs to C0(∂�) for ρ ∈ C0(∂�). The norm of K̂
(ξ)

S is discussed later.
Second, we define K̂

(ξ)

R as
(
K̂

(ξ)

R ρ
)
(t) :=

∫
∂�

K
(ξ)

R (t, s; k)ρ(s) ds, r(t) ∈ ∂�, (31)

where

K
(ξ)

R (t, s; k) := K(t, s; k) − K0(t, s)(1 − hξ (|t − s|)), (32)

which is bounded and continuous on each ∂� × �i . Combining (21), (30) and (31), we can
see K̂ = K̂

(ξ)

S + K̂
(ξ)

R . Now, our remaining task to have a non-singular integral equation is just
to check that the following inequality holds for a certain ξ > 0:∥∥K̂

(ξ)

S ρ
∥∥ < ‖ρ‖ for ρ ∈ C0(∂�). (33)

If the boundary consists of a single C2 arc, one can always find a positive ξ such that the
inequality (33) holds. In fact, for each boundary point r(t) ∈ ∂�, we have∣∣∣∣

∫
∂�

K
(ξ)

S (t, s)ρ(s) ds

∣∣∣∣ �
∣∣∣∣
∫ t+ξ

t−ξ

K0(t, s)ρ(s) ds

∣∣∣∣
� 2ξM‖ρ‖, (34)

since K0(s, t) can be continuously extended onto ∂� × ∂�. Here M denotes an upper bound
for K0(s, t). On the other hand, in the case of domains with corners, the inequality (33) is
not trivial due to the divergence of the kernel K0(t, s). If neighbouring sides of corners are at
most straight lines, the inequality∣∣K̂(ξ)

S

∣∣ = max
i=1,2,...,m

∣∣∣1 − γi

π

∣∣∣ < 1, (35)

can be proved for sufficient small ξ [29]. More precisely, the case of the boundary value
problem of the Laplace equation is discussed in [29], but one can directly adopt his proof into
the present problem since the singular part of the integral kernel (7) is the same as that for the
Laplace equation. Polygonal domains are typical examples of this class. In the appendix, we
provide a proof of the inequality (33) for general domains with corners whose interior angles
γi are positive. The technique used in the proof is essentially the same as that given in [29].

Now we formulate a well-grounded version of BEM by discretizing the integral equation

ρ(t) −
∫

∂�

K̃(t, s; k)ρ(s) ds = 0 (36)

with the piecewise continuous kernel

K̃(t, s; k) = [(
1 − K̂

(ξ)

S

)−1
K

(ξ)

R (·, s; k)
]
(t). (37)

To have a computable determinant, we consider an approximate integral kernel obtained by
replacing the integrals in the definition of the kernel (37) with finite sums:

K̃(n′)(t, s; k) = K
(ξ)

R (t, s; k) +
n′∑

k1=1

mk1K
(ξ)

S

(
t, tk1

)
K

(ξ)

R

(
tk1, s; k

)

+
n′∑

k1=1

n′∑
k2=1

mk1mk2K
(ξ)

S

(
t, tk2

)
K

(ξ)

S

(
tk2 , tk1

)
K

(ξ)

R

(
tk1 , s; k

)
+ · · · , (38)
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Figure 7. Plot of a novel determinant �(n′,n)(k) for n′ = 125, 250, 500, 1000. k is set to 21.5.

and discretize the integral equation

ρ(t) −
∫

∂�

K̃(n′)(t, s; k)ρ(s) ds = 0 (39)

to

ρ(si) −
n∑

j=1

wjK̃
(n′)(si, sj ; k)ρ(sj ) = 0. (40)

Here ({t1, t2, . . . , tn′ }, {m1,m2, . . . , mn′ }) and ({s1, s2, . . . , sn}, {w1, w2, . . . , wn}) are
independent quadrature rules. Since the Neumann series can be written in terms of the
inverse matrix,

δkl + mlK
(ξ)

S (tk, tl) +
n′∑

j1=1

mj1mlK
(ξ)

S

(
tk, tj1

)
K

(ξ)

S

(
tj1 , tl

)
+ · · · = {

δkl − K
(ξ)

S (tk, tl)ml

}−1
,

(41)

we can reduce the n × n matrix K̃(n′)(si, sj ; k) appearing in (40) to

K̃(n′)(si, sj ; k) = K
(ξ)

R (si, sj ; k) +
n′∑
k

n′∑
l

mkK
(ξ)

S (si, tk)

× {
δkl − K

(ξ)

S (tk, tl)ml

}−1
K

(ξ)

R (tl, sj ; k). (42)

Let us introduce a novel discretized determinant

�(n′,n)(k) = δij − wjK
(n′)(si, sj ; k). (43)

It is guaranteed by the Fredholm theory that �(n′,n) converges to the Fredholm determinant
for (36), say D̃(ξ)(k), as n → ∞ after taking n′ → ∞.

Figures 7 and 8 show the behaviour of �(n′,n)(k) for the π/2–π/3–π/6-angled triangular
domain. Here the cutoff length ξ is set to 0.25, which is a quarter of the length of the shortest
edge of the triangle, and discretized boundary points and their weights are determined by
the Gauss–Legendre quadrature rule. In figure 7, it can be confirmed that �(n′,n)(k) indeed
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Figure 8. Plot of a novel determinant �(qn,n)(k) for q = 1/2, 1, 2, 4. k is set to 21.5.

converges to a certain function of n as n′ is increased, and limn′→∞ �(n′,n)(k) converges to
a definite value with the increase of n. Figure 8 is a plot of �(n′,n)(k) for fixed serval ratios
q = n′/n. It can be found that the fluctuation of �(n′,n)(k) is less than 1% at n = 60, which is
about four times as large as the number of quadrature points nk estimated from the de Broglie
wavelength, when q = 4.

One further notes in figure 8 that limn→∞ �(qn,n)(k) does not depend on the choice of q. If
this is the case for any region of k, it is possible to justify the ‘ad hoc renormalization’ method
mentioned in the previous section. Taking q = 1, in fact, we can decompose the determinant
�(n,n)(k) into

�(n,n)(k) = det
[
δij − K

(ξ)

S (si, sj )wj

]−1
det[δij − K(si, sj ; k)wj ], (44)

where we take a common quadrature rule ({s1, s2, . . . , sn}, {w1, w2, . . . , wn}) to discretize the
integral within the definition of the kernel (37) and that in the integral equation (36). Since
the first term of the decomposition (44) is independent of k and the second one is exactly
the determinant �(n)(k) appearing in the standard BEM, the renormalized determinant should
converge to the ratio of the well-defined Fredholm determinant of the integral equation (36):

lim
n→∞

�(n)(k)

�(n)(0)
= D̃(ξ)(k)

D̃(ξ)(0)
. (45)

4. Summary and discussion

In this paper, we have reformulated the BEM for the domain with corners by deriving a non-
singular integral equation. As mentioned in section 2, the standard BEM encounters a problem
if the domain has corners. The problem is that the determinant appearing in the standard BEM
vanishes everywhere due to the singularity of the integral kernel. We have solved such a
difficulty by introducing a non-singular integral equation and presented a modified version of
BEM based on it. It should be noted, however, that the present formulation cannot be applied
to the domain with cusp-type corners, that is, the condition that γi > 0 should be satisfied,
otherwise the singular part of the decomposed kernel is not normalizable.
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Figure 9. Boundary of the domain around a corner.

It might be of interest, as a next issue, to consider a semiclassical formula derived
from the renormalized determinant. The Gutzwiller–Voros zeta function can be reformulated
as a semiclassical limit of the determinant appearing in the standard BEM [30], and the
semiclassical Fredholm determinant is also introduced based on the Fredholm theory [31].
Since most of the planar billiards whose classical ergodic aspects are well studied and for this
reason often used for the test of semiclassical theories, have corners, semiclassical arguments
based on the reformulated determinant may provide an alternative understanding of diffractive
phenomena caused by singularities of the boundary. Especially in (42), we note that the
integral kernel is given as a sum of the ‘long-range’ propagation and the convergent multiple
scattering expansion of the ‘short-range’ correction. The former can naturally be approximated
by the asymptotic form of the Hankel function in the semiclassical limit k → ∞. On the other
hand, the latter seems to require some other treatment even in the semiclassical regime. The
relation between the Fredholm determinant and the diffractive corrections is to be investigated
along this line.
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Appendix

In this appendix, we shall prove the key inequality (33). As mentioned in the text, we assume
that a domain � is enclosed with the boundary ∂� consisting of a finite number of C2 arcs
{�1, �2, . . . , �m} and each corner has a positive interior angle γi . We take ξ small enough
such that the interval (r(t − ξ), r(t + ξ)) along the boundary contains at most one corner and
estimate

∣∣(K̂(ξ)

S ρ
)
(t)

∣∣ in the following three cases.
(i) The interval (r(t − ξ), r(t + ξ)) is contained in a single arc (see figure 9(i)): in this

case, we have ∣∣∣∣
∫

∂�

K
(ξ)

S (t, s)ρ(s) ds

∣∣∣∣ � 2ξM‖ρ‖, (A.1)

because each restriction of K0(t, s) to �i × �i is bounded. Here

M = max
i=1,2,...,m

sup
t,s∈�i

|KS(t, s)|. (A.2)

(ii) The interval (r(t − ξ), r(t + ξ)) contains a corner and t 
= ti (see figure 9(ii)): in this
case, without loss of generality, we can assume that r(t − ξ) and r(t) are contained in �i and
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r(t + ξ) in �i+1 as illustrated in figure 9(ii). Then, we estimate the integral as∣∣∣∣
∫

∂�

K
(ξ)

S (t, s)ρ(s) ds

∣∣∣∣ �
∣∣∣∣
∫ t+ξ

t−ξ

K0(t, s)ρ(s) ds

∣∣∣∣
�

∣∣∣∣
∫ ti

t−ξ

K0(t, s)ρ(s) ds

∣∣∣∣ +

∣∣∣∣
∫ t+ξ

ti

K0(t, s)ρ(s) ds

∣∣∣∣ , (A.3)

in which the first term is bounded by 2ξM‖ρ‖. Since the second term can be evaluated as∣∣∣∣
∫ t+ξ

ti

K0(t, s)ρ(s) ds

∣∣∣∣ � ‖ρ‖
∫ t+ξ

ti

|K0(t, s)| ds

= ‖ρ‖ ·
∣∣∣∣
∫ t+ξ

ti

K0(t, s) ds

∣∣∣∣
= ‖ρ‖ ·

∣∣∣∣α(t)

π

∣∣∣∣ , (A.4)

where α(t) denotes the angle 
 r(t + ξ)r(t)r(ti). Here, in addition to the above requirement,
we have chosen ξ such that the sign of K0(t, s) is constant for t ∈ (ti −ξ, ti) and s ∈ (ti , ti +ξ),
where r(ti) = pi for i = 1, 2, . . . , m. Due to our assumption for the geometry of domains,
such a choice is always possible. Thus, we have∣∣∣∣

∫
∂�

K
(ξ)

S (t, s)ρ(s) ds

∣∣∣∣ � ‖ρ‖
(

2ξM +

∣∣∣∣α(t)

π

∣∣∣∣
)

. (A.5)

Here we note

α(t) = |π − β(t)|, (A.6)

where β(t) = 
 r(t)r(ti)r(t + ξ), and β(t) = γi + O(ξ) for small ξ since each boundary arc
is assumed to be C2.

(iii) t = ti (see figure 9(iii)): in this case, we have

∣∣(K̂(ξ)

S ρ
)
(ti)

∣∣ � ‖ρ‖
(∫ ti

ti−ξ

|K0(ti , s)| ds +
∫ ti+ξ

ti

|K0(ti , s)| ds

)
+

∣∣∣1 − γi

π

∣∣∣ · |ρ(ti)|

� ‖ρ‖
(

2ξM +
∣∣∣1 − γi

π

∣∣∣) . (A.7)

Here ξ should satisfy the same condition as in (ii). Taking account of (A.1), (A.5) and (A.7),
we can finally confirm that there exists ξ > 0 which satisfies

∥∥K̂
(ξ)

S ρ
∥∥ < ‖ρ‖.
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